首页> 外文OA文献 >Diversifying Multi-Objective Gradient Techniques and their Role in Hybrid Multi-Objective Evolutionary Algorithms for Deformable Medical Image Registration
【2h】

Diversifying Multi-Objective Gradient Techniques and their Role in Hybrid Multi-Objective Evolutionary Algorithms for Deformable Medical Image Registration

机译:多样化的多目标梯度技术及其在可变形医学图像配准的混合多目标进化算法中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

htmlabstractGradient methods and their value in single-objective, real-valued\udoptimization are well-established. As such, they play\uda key role in tackling real-world, hard optimization problems\udsuch as deformable image registration (DIR). A key question\udis to which extent gradient techniques can also play a role in\uda multi-objective approach to DIR. We therefore aim to exploit\udgradient information within an evolutionary-algorithm-based\udmulti-objective optimization framework for DIR. Although an\udanalytical description of the multi-objective gradient (the set\udof all Pareto-optimal improving directions) is\udavailable, it is nontrivial how to best choose the most\udappropriate direction per solution because these directions are\udnot necessarily uniformly distributed in objective space. To\udaddress this, we employ a Monte-Carlo method to obtain\uda discrete, spatially-uniformly distributed approximation of\udthe set of Pareto-optimal improving directions. We then\udapply a diversification technique in which each solution is\udassociated with a unique direction from this set based on its\udmulti- as well as single-objective rank. To assess its utility,\udwe compare a state-of-the-art multi-objective evolutionary\udalgorithm with three different hybrid versions thereof on\udseveral benchmark problems and two medical DIR problems.\udResults show that the diversification strategy successfully\udleads to unbiased improvement, helping an adaptive hybrid\udscheme solve all problems, but the evolutionary algorithm\udremains the most powerful optimization method, providing\udthe best balance between proximity and diversity.
机译:htmlabstractGradient方法及其在单目标,实值\ udoptimization中的值是公认的。因此,它们在解决现实的,困难的优化问题(例如可变形图像配准(DIR))中起着关键作用。一个关键问题\在何种程度上,梯度技术也可以在DIR多目标方法中发挥作用。因此,我们旨在在DIR的基于进化算法的\ ud-多目标优化框架内利用\ udgradient信息。尽管对多目标梯度(所有帕累托最优改进方向的集合\ ud)的\分析分析描述\是可行的,但每个解决方案如何最好地选择\最合适的方向却并非易事,因为这些方向不一定是均匀分布的在客观空间。为了解决这个问题,我们采用了蒙特卡罗方法来获得帕累托最优改进方向集合的离散的,空间均匀分布的近似值。然后,我们采用多样化的技术,在该技术中,每个解决方案都基于其udmulti-和单目标等级与该集中的唯一方向关联。为了评估其效用,\ udwe比较了最先进的多目标进化\ udalgorithm及其在\ ubd基准问题和两个医学DIR问题上的三种不同混合版本。\ ud结果表明,多元化策略成功\ u \ d无偏的改进,有助于自适应混合\ udscheme解决所有问题,但是进化算法\ ud仍然是最强大的优化方法,在接近度和多样性之间提供了最佳平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号